MSE-1: Post-Process Annealing of 3D Printed PEEK Spinal Fusion Cages Karen Wells, Richard Reynolds, James FitzPatrick

Problem Statement:

How can the mechanical performance of 3D printed PEEK spinal fusion cages be improved through a post- processing heat treatment such that printed cages have properties similar to traditionally manufactured cages?

Approach:

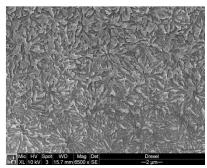
Investigated the effect of various heat treatments on cage porosity, crystallinity, morphology, and ultimately mechanical properties of 3D printed cages:

- Designed heat treatment process based on previous PEEK studies.
- Characterized all samples via microCT, XRD, and SEM.
- Studied failure mode differences between machined and printed cages.

Results:

Table 1: Porosity values pre- and post-anneal (n=18)

Top Scans


Avg Pre-Anneal Avg PostPorosity 1

1500_200C 96.64% 97.10% 0.45% 1500_200C 96.85% 96.81% -0.04% 2000_200C 97.07% 96.89% -0.118% 8buttom Scans

1500_200C 97.47% 97.20% -0.27% 1500_200C 97.47% 97.20% -0.27% 1500_200C 95.80% 97.15% 0.35% 2000_200C 95.80% 95.53% 0.07% 2000_200C 95.80% 95.69% -0.115% -0.115% 2000_200C 95.80% 95.69% -0.115% -0.115% 2000_200C 95.80% 96.80% 96.69% -0.115% -0.115% -0.115% -0.115% -0.000 200C 96.80% 96.80% 96.69% -0.115% -0.115% -0.115% -0.115% -0.115% -0.115% -0.000 200C 96.80% 96.80% 96.69% -0.115% -

Table 2 Crystallinity	values	pre- and	post-anneal	(n=6
-----------------------	--------	----------	-------------	------

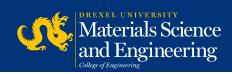
Print Speed	Pre-Anneal Crystallinity	Post 300°C Anneal Crystallinity	Change +6% (p=.03)	
1500 mm/min	24±3%	30±2%		
2000 mm/min	26±2%	34±5%	+8% (p=,02)	

Figure 1: Enhanced surface morphology on annealed 3D printed cages

- MicroCT no significant change in porosity.
- XRD Crystallinity improved by 6-8%.
- SEM showed enhanced surface morphology in 300°C annealed cages.

Discussion & Conclusions:

- Differences in failure mode between printed cages and machined cages still being studied.
- Pores seen to act as crack initiation/propagation sites.
- Thin aligned fibers (~300 nm) observed in porous regions of mechanically tested samples.
- Annealing demonstrated ability to increase crystallinity, but not decrease porosity:
 - Effect on mechanical properties to be determined.


Contact: Dr. Michele Marcolongo

Department Head and Professor,
Materials Science & Engineering

E-mail: marcolms@drexel.edu

Phone: 215-895-2329

